Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 59
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Phys Rev E ; 109(2-1): 024608, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38491602

RESUMO

Odd elasticity describes active elastic systems whose stress-strain relationship is not compatible with a potential energy. As the requirement of energy conservation is lifted from linear elasticity, new antisymmetric (odd) components appear in the elastic tensor. In this work we study the odd elasticity and non-Hermitian wave dynamics of active surfaces, specifically plates of moderate thickness. These odd moduli can endow the vibrational modes of the plate with a nonzero topological invariant known as the first Chern number. Within continuum elastic theory, we show that the Chern number is related to the presence of unidirectional shearing waves that are hosted at the plate's boundary. We show that the existence of these chiral edge waves hinges on a distinctive two-step mechanism. Unlike electronic Chern insulators where the magnetic field at the same time gaps the spectrum and imparts chirality, here the finite thickness of the sample gaps the shear modes, and the odd elasticity makes them chiral.

2.
Nature ; 627(8004): 515-521, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38509279

RESUMO

Fully developed turbulence is a universal and scale-invariant chaotic state characterized by an energy cascade from large to small scales at which the cascade is eventually arrested by dissipation1-6. Here we show how to harness these seemingly structureless turbulent cascades to generate patterns. Pattern formation entails a process of wavelength selection, which can usually be traced to the linear instability of a homogeneous state7. By contrast, the mechanism we propose here is fully nonlinear. It is triggered by the non-dissipative arrest of turbulent cascades: energy piles up at an intermediate scale, which is neither the system size nor the smallest scales at which energy is usually dissipated. Using a combination of theory and large-scale simulations, we show that the tunable wavelength of these cascade-induced patterns can be set by a non-dissipative transport coefficient called odd viscosity, ubiquitous in chiral fluids ranging from bioactive to quantum systems8-12. Odd viscosity, which acts as a scale-dependent Coriolis-like force, leads to a two-dimensionalization of the flow at small scales, in contrast with rotating fluids in which a two-dimensionalization occurs at large scales4. Apart from odd viscosity fluids, we discuss how cascade-induced patterns can arise in natural systems, including atmospheric flows13-19, stellar plasma such as the solar wind20-22, or the pulverization and coagulation of objects or droplets in which mass rather than energy cascades23-25.

3.
Soft Matter ; 20(11): 2480-2490, 2024 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-38385209

RESUMO

In active materials, uncoordinated internal stresses lead to emergent long-range flows. An understanding of how the behavior of active materials depends on mesoscopic (hydrodynamic) parameters is developing, but there remains a gap in knowledge concerning how hydrodynamic parameters depend on the properties of microscopic elements. In this work, we combine experiments and multiscale modeling to relate the structure and dynamics of active nematics composed of biopolymer filaments and molecular motors to their microscopic properties, in particular motor processivity, speed, and valency. We show that crosslinking of filaments by both motors and passive crosslinkers not only augments the contributions to nematic elasticity from excluded volume effects but dominates them. By altering motor kinetics we show that a competition between motor speed and crosslinking results in a nonmonotonic dependence of nematic flow on motor speed. By modulating passive filament crosslinking we show that energy transfer into nematic flow is in large part dictated by crosslinking. Thus motor proteins both generate activity and contribute to nematic elasticity. Our results provide new insights for rationally engineering active materials.


Assuntos
Modelos Biológicos , Proteínas Motores Moleculares , Proteínas Motores Moleculares/química , Citoesqueleto/metabolismo , Cinesinas/metabolismo , Elasticidade
4.
Cell ; 187(2): 481-494.e24, 2024 01 18.
Artigo em Inglês | MEDLINE | ID: mdl-38194965

RESUMO

Cellular form and function emerge from complex mechanochemical systems within the cytoplasm. Currently, no systematic strategy exists to infer large-scale physical properties of a cell from its molecular components. This is an obstacle to understanding processes such as cell adhesion and migration. Here, we develop a data-driven modeling pipeline to learn the mechanical behavior of adherent cells. We first train neural networks to predict cellular forces from images of cytoskeletal proteins. Strikingly, experimental images of a single focal adhesion (FA) protein, such as zyxin, are sufficient to predict forces and can generalize to unseen biological regimes. Using this observation, we develop two approaches-one constrained by physics and the other agnostic-to construct data-driven continuum models of cellular forces. Both reveal how cellular forces are encoded by two distinct length scales. Beyond adherent cell mechanics, our work serves as a case study for integrating neural networks into predictive models for cell biology.


Assuntos
Proteínas do Citoesqueleto , Aprendizado de Máquina , Adesão Celular , Citoplasma/metabolismo , Proteínas do Citoesqueleto/metabolismo , Adesões Focais/metabolismo , Modelos Biológicos
5.
Proc Natl Acad Sci U S A ; 121(3): e2307996120, 2024 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-38215183

RESUMO

Excitable media, ranging from bioelectric tissues and chemical oscillators to forest fires and competing populations, are nonlinear, spatially extended systems capable of spiking. Most investigations of excitable media consider situations where the amplifying and suppressing forces necessary for spiking coexist at every point in space. In this case, spikes arise due to local bistabilities, which require a fine-tuned ratio between local amplification and suppression strengths. But, in nature and engineered systems, these forces can be segregated in space, forming structures like interfaces and boundaries. Here, we show how boundaries can generate and protect spiking when the reacting components can spread out: Even arbitrarily weak diffusion can cause spiking at the edge between two non-excitable media. This edge spiking arises due to a global bistability, which can occur even if amplification and suppression strengths do not allow spiking when mixed. We analytically derive a spiking phase diagram that depends on two parameters: i) the ratio between the system size and the characteristic diffusive length-scale and ii) the ratio between the amplification and suppression strengths. Our analysis explains recent experimental observations of action potentials at the interface between two non-excitable bioelectric tissues. Beyond electrophysiology, we highlight how edge spiking emerges in predator-prey dynamics and in oscillating chemical reactions. Our findings provide a theoretical blueprint for a class of interfacial excitations in reaction-diffusion systems, with potential implications for spatially controlled chemical reactions, nonlinear waveguides and neuromorphic computation, as well as spiking instabilities, such as cardiac arrhythmias, that naturally occur in heterogeneous biological media.

6.
ArXiv ; 2023 Aug 31.
Artigo em Inglês | MEDLINE | ID: mdl-37693184

RESUMO

In active materials, uncoordinated internal stresses lead to emergent long-range flows. An understanding of how the behavior of active materials depends on mesoscopic (hydrodynamic) parameters is developing, but there remains a gap in knowledge concerning how hydrodynamic parameters depend on the properties of microscopic elements. In this work, we combine experiments and multiscale modeling to relate the structure and dynamics of active nematics composed of biopolymer filaments and molecular motors to their microscopic properties, in particular motor processivity, speed, and valency. We show that crosslinking of filaments by both motors and passive crosslinkers not only augments the contributions to nematic elasticity from excluded volume effects but dominates them. By altering motor kinetics we show that a competition between motor speed and crosslinking results in a nonmonotonic dependence of nematic flow on motor speed. By modulating passive filament crosslinking we show that energy transfer into nematic flow is in large part dictated by crosslinking. Thus motor proteins both generate activity and contribute to nematic elasticity. Our results provide new insights for rationally engineering active materials.

7.
ArXiv ; 2023 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-36911285

RESUMO

Cellular form and function emerge from complex mechanochemical systems within the cytoplasm. No systematic strategy currently exists to infer large-scale physical properties of a cell from its many molecular components. This is a significant obstacle to understanding biophysical processes such as cell adhesion and migration. Here, we develop a data-driven biophysical modeling approach to learn the mechanical behavior of adherent cells. We first train neural networks to predict forces generated by adherent cells from images of cytoskeletal proteins. Strikingly, experimental images of a single focal adhesion protein, such as zyxin, are sufficient to predict forces and generalize to unseen biological regimes. This protein field alone contains enough information to yield accurate predictions even if forces themselves are generated by many interacting proteins. We next develop two approaches - one explicitly constrained by physics, the other more agnostic - that help construct data-driven continuum models of cellular forces using this single focal adhesion field. Both strategies consistently reveal that cellular forces are encoded by two different length scales in adhesion protein distributions. Beyond adherent cell mechanics, our work serves as a case study for how to integrate neural networks in the construction of predictive phenomenological models in cell biology, even when little knowledge of the underlying microscopic mechanisms exist.

8.
bioRxiv ; 2023 Dec 23.
Artigo em Inglês | MEDLINE | ID: mdl-38187670

RESUMO

Morphogenesis is the process whereby the body of an organism develops its target shape. The morphogen BMP is known to play a conserved role across bilaterian organisms in determining the dorsoventral (DV) axis. Yet, how BMP governs the spatio-temporal dynamics of cytoskeletal proteins driving morphogenetic flow remains an open question. Here, we use machine learning to mine a morphodynamic atlas of Drosophila development, and construct a mathematical model capable of predicting the coupled dynamics of myosin, E-cadherin, and morphogenetic flow. Mutant analysis shows that BMP sets the initial condition of this dynamical system according to the following signaling cascade: BMP establishes DV pair-rule-gene patterns that set-up an E-cadherin gradient which in turn creates a myosin gradient in the opposite direction through mechanochemical feedbacks. Using neural tube organoids, we argue that BMP, and the signaling cascade it triggers, prime the conserved dynamics of neuroectoderm morphogenesis from fly to humans.

9.
Phys Rev Lett ; 127(18): 189901, 2021 Oct 29.
Artigo em Inglês | MEDLINE | ID: mdl-34767434

RESUMO

This corrects the article DOI: 10.1103/PhysRevLett.126.138001.

10.
Nat Commun ; 12(1): 5935, 2021 Oct 12.
Artigo em Inglês | MEDLINE | ID: mdl-34642324

RESUMO

Materials made from active, living, or robotic components can display emergent properties arising from local sensing and computation. Here, we realize a freestanding active metabeam with piezoelectric elements and electronic feed-forward control that gives rise to an odd micropolar elasticity absent in energy-conserving media. The non-reciprocal odd modulus enables bending and shearing cycles that convert electrical energy into mechanical work, and vice versa. The sign of this elastic modulus is linked to a non-Hermitian topological index that determines the localization of vibrational modes to sample boundaries. At finite frequency, we can also tune the phase angle of the active modulus to produce a direction-dependent bending modulus and control non-Hermitian vibrational properties. Our continuum approach, built on symmetries and conservation laws, could be exploited to design others systems such as synthetic biofilaments and membranes with feed-forward control loops.

11.
Nature ; 592(7854): 363-369, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33854249

RESUMO

Out of equilibrium, a lack of reciprocity is the rule rather than the exception. Non-reciprocity occurs, for instance, in active matter1-6, non-equilibrium systems7-9, networks of neurons10,11, social groups with conformist and contrarian members12, directional interface growth phenomena13-15 and metamaterials16-20. Although wave propagation in non-reciprocal media has recently been closely studied1,16-20, less is known about the consequences of non-reciprocity on the collective behaviour of many-body systems. Here we show that non-reciprocity leads to time-dependent phases in which spontaneously broken continuous symmetries are dynamically restored. We illustrate this mechanism with simple robotic demonstrations. The resulting phase transitions are controlled by spectral singularities called exceptional points21. We describe the emergence of these phases using insights from bifurcation theory22,23 and non-Hermitian quantum mechanics24,25. Our approach captures non-reciprocal generalizations of three archetypal classes of self-organization out of equilibrium: synchronization, flocking and pattern formation. Collective phenomena in these systems range from active time-(quasi)crystals to exceptional-point-enforced pattern formation and hysteresis. Our work lays the foundation for a general theory of critical phenomena in systems whose dynamics is not governed by an optimization principle.

12.
Phys Rev Lett ; 126(13): 138001, 2021 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-33861116

RESUMO

The mechanical response of active media ranging from biological gels to living tissues is governed by a subtle interplay between viscosity and elasticity. We generalize the canonical Kelvin-Voigt and Maxwell models to active viscoelastic media that break both parity and time-reversal symmetries. The resulting continuum theories exhibit viscous and elastic tensors that are both antisymmetric, or odd, under exchange of pairs of indices. We analyze how these parity violating viscoelastic coefficients determine the relaxation mechanisms and wave-propagation properties of odd materials.

13.
Proc Natl Acad Sci U S A ; 118(10)2021 03 09.
Artigo em Inglês | MEDLINE | ID: mdl-33653956

RESUMO

Hydrodynamic theories effectively describe many-body systems out of equilibrium in terms of a few macroscopic parameters. However, such parameters are difficult to determine from microscopic information. Seldom is this challenge more apparent than in active matter, where the hydrodynamic parameters are in fact fields that encode the distribution of energy-injecting microscopic components. Here, we use active nematics to demonstrate that neural networks can map out the spatiotemporal variation of multiple hydrodynamic parameters and forecast the chaotic dynamics of these systems. We analyze biofilament/molecular-motor experiments with microtubule/kinesin and actin/myosin complexes as computer vision problems. Our algorithms can determine how activity and elastic moduli change as a function of space and time, as well as adenosine triphosphate (ATP) or motor concentration. The only input needed is the orientation of the biofilaments and not the coupled velocity field which is harder to access in experiments. We can also forecast the evolution of these chaotic many-body systems solely from image sequences of their past using a combination of autoencoders and recurrent neural networks with residual architecture. In realistic experimental setups for which the initial conditions are not perfectly known, our physics-inspired machine-learning algorithms can surpass deterministic simulations. Our study paves the way for artificial-intelligence characterization and control of coupled chaotic fields in diverse physical and biological systems, even in the absence of knowledge of the underlying dynamics.


Assuntos
Hidrodinâmica , Aprendizado de Máquina
14.
Nat Mater ; 20(6): 875-882, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33603187

RESUMO

Active materials are capable of converting free energy into mechanical work to produce autonomous motion, and exhibit striking collective dynamics that biology relies on for essential functions. Controlling those dynamics and transport in synthetic systems has been particularly challenging. Here, we introduce the concept of spatially structured activity as a means of controlling and manipulating transport in active nematic liquid crystals consisting of actin filaments and light-sensitive myosin motors. Simulations and experiments are used to demonstrate that topological defects can be generated at will and then constrained to move along specified trajectories by inducing local stresses in an otherwise passive material. These results provide a foundation for the design of autonomous and reconfigurable microfluidic systems where transport is controlled by modulating activity with light.


Assuntos
Cristais Líquidos/química , Citoesqueleto de Actina/metabolismo , Luz , Miosinas/metabolismo , Análise Espaço-Temporal
15.
Proc Natl Acad Sci U S A ; 118(4)2021 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-33472977

RESUMO

Liquid crystals are complex fluids that allow exquisite control of light propagation thanks to their orientational order and optical anisotropy. Inspired by recent advances in liquid-crystal photo-patterning technology, we propose a soft-matter platform for assembling topological photonic materials that holds promise for protected unidirectional waveguides, sensors, and lasers. Crucial to our approach is to use spatial variations in the orientation of the nematic liquid-crystal molecules to emulate the time modulations needed in a so-called Floquet topological insulator. The varying orientation of the nematic director introduces a geometric phase that rotates the local optical axes. In conjunction with suitably designed structural properties, this geometric phase leads to the creation of topologically protected states of light. We propose and analyze in detail soft photonic realizations of two iconic topological systems: a Su-Schrieffer-Heeger chain and a Chern insulator. The use of soft building blocks potentially allows for reconfigurable systems that exploit the interplay between topological states of light and the underlying responsive medium.

16.
Phys Rev Lett ; 127(26): 268001, 2021 Dec 24.
Artigo em Inglês | MEDLINE | ID: mdl-35029487

RESUMO

Crystallography typically studies collections of point particles whose interaction forces are the gradient of a potential. Lifting this assumption generically gives rise in the continuum limit to a form of elasticity with additional moduli known as odd elasticity. We show that such odd elastic moduli modify the strain induced by topological defects and their interactions, even reversing the stability of, otherwise, bound dislocation pairs. Beyond continuum theory, isolated dislocations can self propel via microscopic work cycles active at their cores that compete with conventional Peach-Koehler forces caused, for example, by an ambient torque density. We perform molecular dynamics simulations isolating active plastic processes and discuss their experimental relevance to solids composed of spinning particles, vortexlike objects, and robotic metamaterials.

17.
Phys Rev Lett ; 125(11): 118001, 2020 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-32976010

RESUMO

Solids built out of active components can exhibit nonreciprocal elastic coefficients that give rise to non-Hermitian wave phenomena. Here, we investigate non-Hermitian effects present at the boundary of two-dimensional active elastic media obeying two general assumptions: their microscopic forces conserve linear momentum and arise only from static deformations. Using continuum equations, we demonstrate the existence of the non-Hermitian skin effect in which the boundary hosts an extensive number of localized modes. Furthermore, lattice models reveal non-Hermitian topological transitions mediated by exceptional rings driven by the activity level of individual bonds.

18.
Phys Rev Lett ; 124(24): 248001, 2020 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-32639808

RESUMO

Microscopic symmetries impose strong constraints on the elasticity of a crystalline solid. In addition to the usual spatial symmetries captured by the tensorial character of the elastic tensor, hidden nonspatial symmetries can occur microscopically in special classes of mechanical structures. Examples of such nonspatial symmetries occur in families of mechanical metamaterials where a duality transformation relates pairs of different configurations. We show on general grounds how the existence of nonspatial symmetries further constrains the elastic tensor, reducing the number of independent moduli. In systems exhibiting a duality transformation, the resulting constraints on the number of moduli are particularly stringent at the self-dual point but persist even away from it, in a way reminiscent of critical phenomena.

19.
Phys Rev E ; 101(5-1): 052606, 2020 May.
Artigo em Inglês | MEDLINE | ID: mdl-32575189

RESUMO

At equilibrium, the structure and response of ordered phases are typically determined by the spontaneous breaking of spatial symmetries. Out of equilibrium, spatial order itself can become a dynamically emergent concept. In this article, we show that spatially anisotropic viscous coefficients and stresses can be designed in a far-from-equilibrium fluid by applying to its constituents a time-modulated drive. If the drive induces a rotation whose rate is slowed down when the constituents point along specific directions, then anisotropic structures and mechanical responses arise at long timescales. We demonstrate that the viscous response of such two-dimensional anisotropic driven fluids can acquire a tensorial, dissipationless component called anisotropic odd (or Hall) viscosity. Classical fluids with internal torques can display additional components of the odd viscosity neglected in previous studies of quantum Hall fluids that assumed angular momentum conservation. We show that, unlike their isotropic counterparts, these anisotropic and angular momentum-violating odd-viscosity coefficients can change even the bulk flow of an incompressible fluid by acting as a source of vorticity. In addition, shear distortions in the shape of an inclusion result in torques. We derive how the odd-viscous coefficients depend on the nonlinear, dissipative response of a fluid of rotating rods, i.e., odd viscosity is not simply given by angular momentum density.

20.
Science ; 367(6482): 1120-1124, 2020 03 06.
Artigo em Inglês | MEDLINE | ID: mdl-32139540

RESUMO

Topological structures are effective descriptors of the nonequilibrium dynamics of diverse many-body systems. For example, motile, point-like topological defects capture the salient features of two-dimensional active liquid crystals composed of energy-consuming anisotropic units. We dispersed force-generating microtubule bundles in a passive colloidal liquid crystal to form a three-dimensional active nematic. Light-sheet microscopy revealed the temporal evolution of the millimeter-scale structure of these active nematics with single-bundle resolution. The primary topological excitations are extended, charge-neutral disclination loops that undergo complex dynamics and recombination events. Our work suggests a framework for analyzing the nonequilibrium dynamics of bulk anisotropic systems as diverse as driven complex fluids, active metamaterials, biological tissues, and collections of robots or organisms.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...